Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier

Identifieur interne : 000255 ( Russie/Analysis ); précédent : 000254; suivant : 000256

Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier

Auteurs : RBID : Pascal:07-0153761

Descripteurs français

English descriptors

Abstract

Shallow GaAs/InGaAs/GaAs quantum well structures with and without a three-monolayer thick AlAs central barrier have been investigated for different well widths and Si doping levels. The transport parameters are determined by resistivity measurements in the temperature range 4-300 K and magnetotransport in magnetic fields up to 12 T. The (subband) carrier concentrations and mobilities are extracted from the Hall data and Shubnikov-de Haas oscillations. We find that the transport parameters are strongly affected by the insertion of the AlAs central barrier. Photoluminescence spectra, measured at 77 K, show an increase of the transition energies upon insertion of the barrier. The transport and optical data are analysed with the help of self-consistent calculations of the subband structure and envelope wavefunctions. Insertion of the AlAs central barrier changes the spatial distribution of the electron wavefunctions and leads to the formation of hybrid states, i.e., states which extend over the InGaAs and the delta-doped layer quantum wells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0153761

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier</title>
<author>
<name sortKey="Kulbachinskii, V A" uniqKey="Kulbachinskii V">V. A. Kulbachinskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University, GSP-2</s1>
<s2>119992 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vasil Evskii, I S" uniqKey="Vasil Evskii I">I. S. Vasil Evskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University, GSP-2</s1>
<s2>119992 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of UHF Semiconductor Electronics</s1>
<s2>117105, Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lunin, R A" uniqKey="Lunin R">R. A. Lunin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University, GSP-2</s1>
<s2>119992 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Galistu, G" uniqKey="Galistu G">G. Galistu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1018 XE Amsterdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Visser, A" uniqKey="De Visser A">A. De Visser</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1018 XE Amsterdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Galiev, G B" uniqKey="Galiev G">G. B. Galiev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of UHF Semiconductor Electronics</s1>
<s2>117105, Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shirokov, S S" uniqKey="Shirokov S">S. S. Shirokov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of UHF Semiconductor Electronics</s1>
<s2>117105, Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mokerov, V G" uniqKey="Mokerov V">V. G. Mokerov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of UHF Semiconductor Electronics</s1>
<s2>117105, Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0153761</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0153761 INIST</idno>
<idno type="RBID">Pascal:07-0153761</idno>
<idno type="wicri:Area/Main/Corpus">008060</idno>
<idno type="wicri:Area/Main/Repository">007A74</idno>
<idno type="wicri:Area/Russie/Extraction">000255</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Carrier density</term>
<term>Carrier mobility</term>
<term>Doping</term>
<term>Electron mobility</term>
<term>Gallium arsenides</term>
<term>Indium arsenides</term>
<term>Magnetic field effects</term>
<term>Magnetoresistance</term>
<term>Oscillations</term>
<term>Photoluminescence</term>
<term>Quantum wells</term>
<term>Shubnikov-de Haas effect</term>
<term>Silicon additions</term>
<term>Subband</term>
<term>Transport processes</term>
<term>Ultrathin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mobilité électron</term>
<term>Phénomène transport</term>
<term>Dopage</term>
<term>Addition silicium</term>
<term>Magnétorésistance</term>
<term>Effet champ magnétique</term>
<term>Sous bande</term>
<term>Densité porteur charge</term>
<term>Mobilité porteur charge</term>
<term>Effet Shubnikov de Haas</term>
<term>Oscillation</term>
<term>Photoluminescence</term>
<term>Gallium arséniure</term>
<term>Puits quantique</term>
<term>Aluminium arséniure</term>
<term>Couche ultramince</term>
<term>Indium arséniure</term>
<term>GaAs</term>
<term>InGaAs</term>
<term>AlAs</term>
<term>7867D</term>
<term>7363H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Shallow GaAs/InGaAs/GaAs quantum well structures with and without a three-monolayer thick AlAs central barrier have been investigated for different well widths and Si doping levels. The transport parameters are determined by resistivity measurements in the temperature range 4-300 K and magnetotransport in magnetic fields up to 12 T. The (subband) carrier concentrations and mobilities are extracted from the Hall data and Shubnikov-de Haas oscillations. We find that the transport parameters are strongly affected by the insertion of the AlAs central barrier. Photoluminescence spectra, measured at 77 K, show an increase of the transition energies upon insertion of the barrier. The transport and optical data are analysed with the help of self-consistent calculations of the subband structure and envelope wavefunctions. Insertion of the AlAs central barrier changes the spatial distribution of the electron wavefunctions and leads to the formation of hybrid states, i.e., states which extend over the InGaAs and the delta-doped layer quantum wells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KULBACHINSKII (V. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VASIL'EVSKII (I. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LUNIN (R. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GALISTU (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DE VISSER (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GALIEV (G. B.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SHIROKOV (S. S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MOKEROV (V. G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University, GSP-2</s1>
<s2>119992 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of UHF Semiconductor Electronics</s1>
<s2>117105, Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>222-228</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000146969350090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0153761</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Shallow GaAs/InGaAs/GaAs quantum well structures with and without a three-monolayer thick AlAs central barrier have been investigated for different well widths and Si doping levels. The transport parameters are determined by resistivity measurements in the temperature range 4-300 K and magnetotransport in magnetic fields up to 12 T. The (subband) carrier concentrations and mobilities are extracted from the Hall data and Shubnikov-de Haas oscillations. We find that the transport parameters are strongly affected by the insertion of the AlAs central barrier. Photoluminescence spectra, measured at 77 K, show an increase of the transition energies upon insertion of the barrier. The transport and optical data are analysed with the help of self-consistent calculations of the subband structure and envelope wavefunctions. Insertion of the AlAs central barrier changes the spatial distribution of the electron wavefunctions and leads to the formation of hybrid states, i.e., states which extend over the InGaAs and the delta-doped layer quantum wells.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C63H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition silicium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Silicon additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Magnétorésistance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetoresistance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sous bande</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Subband</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Subbanda</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet Shubnikov de Haas</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Shubnikov-de Haas effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Oscillation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Oscillations</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Aluminium arséniure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Couche ultramince</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Ultrathin films</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>AlAs</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7867D</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7363H</s0>
<s4>INC</s4>
<s5>61</s5>
</fC03>
<fN21>
<s1>099</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000255 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000255 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:07-0153761
   |texte=   Electron transport and optical properties of shallow GaAs/InGaAs/GaAs quantum wells with a thin central AlAs barrier
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024